Linux server.edchosting.com 4.18.0-553.79.1.lve.el7h.x86_64 #1 SMP Wed Oct 15 16:34:46 UTC 2025 x86_64
LiteSpeed
Server IP : 75.98.162.185 & Your IP : 216.73.216.163
Domains :
Cant Read [ /etc/named.conf ]
User : goons4good
Terminal
Auto Root
Create File
Create Folder
Localroot Suggester
Backdoor Destroyer
Readme
/
lib64 /
python2.7 /
site-packages /
numpy /
doc /
Delete
Unzip
Name
Size
Permission
Date
Action
__init__.py
517
B
-rw-r--r--
2013-04-07 01:04
__init__.pyc
783
B
-rw-r--r--
2018-04-10 19:40
__init__.pyo
783
B
-rw-r--r--
2018-04-10 19:40
basics.py
5.2
KB
-rw-r--r--
2013-04-07 01:04
basics.pyc
5.35
KB
-rw-r--r--
2018-04-10 19:40
basics.pyo
5.35
KB
-rw-r--r--
2018-04-10 19:40
broadcasting.py
5.38
KB
-rw-r--r--
2013-04-07 01:04
broadcasting.pyc
5.54
KB
-rw-r--r--
2018-04-10 19:40
broadcasting.pyo
5.54
KB
-rw-r--r--
2018-04-10 19:40
byteswapping.py
4.67
KB
-rw-r--r--
2013-04-07 01:04
byteswapping.pyc
4.83
KB
-rw-r--r--
2018-04-10 19:40
byteswapping.pyo
4.83
KB
-rw-r--r--
2018-04-10 19:40
constants.py
8.68
KB
-rw-r--r--
2013-04-07 01:04
constants.pyc
7.94
KB
-rw-r--r--
2018-04-10 19:40
constants.pyo
7.94
KB
-rw-r--r--
2018-04-10 19:40
creation.py
5.28
KB
-rw-r--r--
2013-04-07 01:04
creation.pyc
5.44
KB
-rw-r--r--
2018-04-10 19:40
creation.pyo
5.44
KB
-rw-r--r--
2018-04-10 19:40
glossary.py
11.7
KB
-rw-r--r--
2013-04-07 01:04
glossary.pyc
11.85
KB
-rw-r--r--
2018-04-10 19:40
glossary.pyo
11.85
KB
-rw-r--r--
2018-04-10 19:40
howtofind.py
94
B
-rw-r--r--
2013-04-07 01:04
howtofind.pyc
254
B
-rw-r--r--
2018-04-10 19:40
howtofind.pyo
254
B
-rw-r--r--
2018-04-10 19:40
indexing.py
13.95
KB
-rw-r--r--
2013-04-07 01:04
indexing.pyc
14.11
KB
-rw-r--r--
2018-04-10 19:40
indexing.pyo
14.11
KB
-rw-r--r--
2018-04-10 19:40
internals.py
9.38
KB
-rw-r--r--
2013-04-07 01:04
internals.pyc
9.54
KB
-rw-r--r--
2018-04-10 19:40
internals.pyo
9.54
KB
-rw-r--r--
2018-04-10 19:40
io.py
82
B
-rw-r--r--
2013-04-07 01:04
io.pyc
235
B
-rw-r--r--
2018-04-10 19:40
io.pyo
235
B
-rw-r--r--
2018-04-10 19:40
jargon.py
96
B
-rw-r--r--
2013-04-07 01:04
jargon.pyc
253
B
-rw-r--r--
2018-04-10 19:40
jargon.pyo
253
B
-rw-r--r--
2018-04-10 19:40
methods_vs_functions.py
130
B
-rw-r--r--
2013-04-07 01:04
methods_vs_functions.pyc
301
B
-rw-r--r--
2018-04-10 19:40
methods_vs_functions.pyo
301
B
-rw-r--r--
2018-04-10 19:40
misc.py
5.97
KB
-rw-r--r--
2013-04-07 01:04
misc.pyc
6.12
KB
-rw-r--r--
2018-04-10 19:40
misc.pyo
6.12
KB
-rw-r--r--
2018-04-10 19:40
performance.py
100
B
-rw-r--r--
2013-04-07 01:04
performance.pyc
262
B
-rw-r--r--
2018-04-10 19:40
performance.pyo
262
B
-rw-r--r--
2018-04-10 19:40
structured_arrays.py
8.56
KB
-rw-r--r--
2013-04-07 01:04
structured_arrays.pyc
8.72
KB
-rw-r--r--
2018-04-10 19:40
structured_arrays.pyo
8.72
KB
-rw-r--r--
2018-04-10 19:40
subclassing.py
19.69
KB
-rw-r--r--
2013-04-07 01:04
subclassing.pyc
19.85
KB
-rw-r--r--
2018-04-10 19:40
subclassing.pyo
19.85
KB
-rw-r--r--
2018-04-10 19:40
ufuncs.py
5.24
KB
-rw-r--r--
2013-04-07 01:04
ufuncs.pyc
5.39
KB
-rw-r--r--
2018-04-10 19:40
ufuncs.pyo
5.39
KB
-rw-r--r--
2018-04-10 19:40
Save
Rename
""" ========= Constants ========= Numpy includes several constants: %(constant_list)s """ # # Note: the docstring is autogenerated. # import textwrap, re # Maintain same format as in numpy.add_newdocs constants = [] def add_newdoc(module, name, doc): constants.append((name, doc)) add_newdoc('numpy', 'Inf', """ IEEE 754 floating point representation of (positive) infinity. Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for `inf`. For more details, see `inf`. See Also -------- inf """) add_newdoc('numpy', 'Infinity', """ IEEE 754 floating point representation of (positive) infinity. Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for `inf`. For more details, see `inf`. See Also -------- inf """) add_newdoc('numpy', 'NAN', """ IEEE 754 floating point representation of Not a Number (NaN). `NaN` and `NAN` are equivalent definitions of `nan`. Please use `nan` instead of `NAN`. See Also -------- nan """) add_newdoc('numpy', 'NINF', """ IEEE 754 floating point representation of negative infinity. Returns ------- y : float A floating point representation of negative infinity. See Also -------- isinf : Shows which elements are positive or negative infinity isposinf : Shows which elements are positive infinity isneginf : Shows which elements are negative infinity isnan : Shows which elements are Not a Number isfinite : Shows which elements are finite (not one of Not a Number, positive infinity and negative infinity) Notes ----- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Also that positive infinity is not equivalent to negative infinity. But infinity is equivalent to positive infinity. Examples -------- >>> np.NINF -inf >>> np.log(0) -inf """) add_newdoc('numpy', 'NZERO', """ IEEE 754 floating point representation of negative zero. Returns ------- y : float A floating point representation of negative zero. See Also -------- PZERO : Defines positive zero. isinf : Shows which elements are positive or negative infinity. isposinf : Shows which elements are positive infinity. isneginf : Shows which elements are negative infinity. isnan : Shows which elements are Not a Number. isfinite : Shows which elements are finite - not one of Not a Number, positive infinity and negative infinity. Notes ----- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). Negative zero is considered to be a finite number. Examples -------- >>> np.NZERO -0.0 >>> np.PZERO 0.0 >>> np.isfinite([np.NZERO]) array([ True], dtype=bool) >>> np.isnan([np.NZERO]) array([False], dtype=bool) >>> np.isinf([np.NZERO]) array([False], dtype=bool) """) add_newdoc('numpy', 'NaN', """ IEEE 754 floating point representation of Not a Number (NaN). `NaN` and `NAN` are equivalent definitions of `nan`. Please use `nan` instead of `NaN`. See Also -------- nan """) add_newdoc('numpy', 'PINF', """ IEEE 754 floating point representation of (positive) infinity. Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for `inf`. For more details, see `inf`. See Also -------- inf """) add_newdoc('numpy', 'PZERO', """ IEEE 754 floating point representation of positive zero. Returns ------- y : float A floating point representation of positive zero. See Also -------- NZERO : Defines negative zero. isinf : Shows which elements are positive or negative infinity. isposinf : Shows which elements are positive infinity. isneginf : Shows which elements are negative infinity. isnan : Shows which elements are Not a Number. isfinite : Shows which elements are finite - not one of Not a Number, positive infinity and negative infinity. Notes ----- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). Positive zero is considered to be a finite number. Examples -------- >>> np.PZERO 0.0 >>> np.NZERO -0.0 >>> np.isfinite([np.PZERO]) array([ True], dtype=bool) >>> np.isnan([np.PZERO]) array([False], dtype=bool) >>> np.isinf([np.PZERO]) array([False], dtype=bool) """) add_newdoc('numpy', 'e', """ Euler's constant, base of natural logarithms, Napier's constant. ``e = 2.71828182845904523536028747135266249775724709369995...`` See Also -------- exp : Exponential function log : Natural logarithm References ---------- .. [1] http://en.wikipedia.org/wiki/Napier_constant """) add_newdoc('numpy', 'inf', """ IEEE 754 floating point representation of (positive) infinity. Returns ------- y : float A floating point representation of positive infinity. See Also -------- isinf : Shows which elements are positive or negative infinity isposinf : Shows which elements are positive infinity isneginf : Shows which elements are negative infinity isnan : Shows which elements are Not a Number isfinite : Shows which elements are finite (not one of Not a Number, positive infinity and negative infinity) Notes ----- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Also that positive infinity is not equivalent to negative infinity. But infinity is equivalent to positive infinity. `Inf`, `Infinity`, `PINF` and `infty` are aliases for `inf`. Examples -------- >>> np.inf inf >>> np.array([1]) / 0. array([ Inf]) """) add_newdoc('numpy', 'infty', """ IEEE 754 floating point representation of (positive) infinity. Use `inf` because `Inf`, `Infinity`, `PINF` and `infty` are aliases for `inf`. For more details, see `inf`. See Also -------- inf """) add_newdoc('numpy', 'nan', """ IEEE 754 floating point representation of Not a Number (NaN). Returns ------- y : A floating point representation of Not a Number. See Also -------- isnan : Shows which elements are Not a Number. isfinite : Shows which elements are finite (not one of Not a Number, positive infinity and negative infinity) Notes ----- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. `NaN` and `NAN` are aliases of `nan`. Examples -------- >>> np.nan nan >>> np.log(-1) nan >>> np.log([-1, 1, 2]) array([ NaN, 0. , 0.69314718]) """) add_newdoc('numpy', 'newaxis', """ A convenient alias for None, useful for indexing arrays. See Also -------- `numpy.doc.indexing` Examples -------- >>> newaxis is None True >>> x = np.arange(3) >>> x array([0, 1, 2]) >>> x[:, newaxis] array([[0], [1], [2]]) >>> x[:, newaxis, newaxis] array([[[0]], [[1]], [[2]]]) >>> x[:, newaxis] * x array([[0, 0, 0], [0, 1, 2], [0, 2, 4]]) Outer product, same as ``outer(x, y)``: >>> y = np.arange(3, 6) >>> x[:, newaxis] * y array([[ 0, 0, 0], [ 3, 4, 5], [ 6, 8, 10]]) ``x[newaxis, :]`` is equivalent to ``x[newaxis]`` and ``x[None]``: >>> x[newaxis, :].shape (1, 3) >>> x[newaxis].shape (1, 3) >>> x[None].shape (1, 3) >>> x[:, newaxis].shape (3, 1) """) if __doc__: constants_str = [] constants.sort() for name, doc in constants: s = textwrap.dedent(doc).replace("\n", "\n ") # Replace sections by rubrics lines = s.split("\n") new_lines = [] for line in lines: m = re.match(r'^(\s+)[-=]+\s*$', line) if m and new_lines: prev = textwrap.dedent(new_lines.pop()) new_lines.append('%s.. rubric:: %s' % (m.group(1), prev)) new_lines.append('') else: new_lines.append(line) s = "\n".join(new_lines) # Done. constants_str.append(""".. const:: %s\n %s""" % (name, s)) constants_str = "\n".join(constants_str) __doc__ = __doc__ % dict(constant_list=constants_str) del constants_str, name, doc del line, lines, new_lines, m, s, prev del constants, add_newdoc