Linux server.edchosting.com 4.18.0-553.79.1.lve.el7h.x86_64 #1 SMP Wed Oct 15 16:34:46 UTC 2025 x86_64
LiteSpeed
Server IP : 75.98.162.185 & Your IP : 216.73.216.163
Domains :
Cant Read [ /etc/named.conf ]
User : goons4good
Terminal
Auto Root
Create File
Create Folder
Localroot Suggester
Backdoor Destroyer
Readme
/
usr /
lib64 /
python2.7 /
site-packages /
numpy /
core /
Delete
Unzip
Name
Size
Permission
Date
Action
include
[ DIR ]
drwxr-xr-x
2021-09-16 10:54
lib
[ DIR ]
drwxr-xr-x
2021-09-16 10:54
tests
[ DIR ]
drwxr-xr-x
2021-09-16 10:54
__init__.py
1.71
KB
-rw-r--r--
2013-04-07 01:04
__init__.pyc
1.96
KB
-rw-r--r--
2018-04-10 19:40
__init__.pyo
1.96
KB
-rw-r--r--
2018-04-10 19:40
_dotblas.so
23.57
KB
-rwxr-xr-x
2018-04-10 19:40
_dummy.so
6.74
KB
-rwxr-xr-x
2018-04-10 19:40
_internal.py
16.37
KB
-rw-r--r--
2013-04-07 01:04
_internal.pyc
14.11
KB
-rw-r--r--
2018-04-10 19:40
_internal.pyo
14.11
KB
-rw-r--r--
2018-04-10 19:40
_methods.py
3.75
KB
-rw-r--r--
2013-04-07 01:04
_methods.pyc
4.18
KB
-rw-r--r--
2018-04-10 19:40
_methods.pyo
4.18
KB
-rw-r--r--
2018-04-10 19:40
arrayprint.py
25.21
KB
-rw-r--r--
2013-04-07 01:04
arrayprint.pyc
22.85
KB
-rw-r--r--
2018-04-10 19:40
arrayprint.pyo
22.85
KB
-rw-r--r--
2018-04-10 19:40
defchararray.py
70.67
KB
-rw-r--r--
2013-04-07 01:04
defchararray.pyc
78.49
KB
-rw-r--r--
2018-04-10 19:40
defchararray.pyo
78.49
KB
-rw-r--r--
2018-04-10 19:40
fromnumeric.py
79.16
KB
-rw-r--r--
2013-04-07 01:04
fromnumeric.pyc
81.98
KB
-rw-r--r--
2018-04-10 19:40
fromnumeric.pyo
81.98
KB
-rw-r--r--
2018-04-10 19:40
function_base.py
5.34
KB
-rw-r--r--
2013-04-07 01:04
function_base.pyc
5.7
KB
-rw-r--r--
2018-04-10 19:40
function_base.pyo
5.7
KB
-rw-r--r--
2018-04-10 19:40
generate_numpy_api.py
7.24
KB
-rw-r--r--
2013-04-07 01:04
generate_numpy_api.pyc
6.92
KB
-rw-r--r--
2018-04-10 19:40
generate_numpy_api.pyo
6.92
KB
-rw-r--r--
2018-04-10 19:40
getlimits.py
9.15
KB
-rw-r--r--
2013-04-07 01:04
getlimits.pyc
10.45
KB
-rw-r--r--
2018-04-10 19:40
getlimits.pyo
10.45
KB
-rw-r--r--
2018-04-10 19:40
info.py
4.53
KB
-rw-r--r--
2013-04-07 01:04
info.pyc
4.69
KB
-rw-r--r--
2018-04-10 19:40
info.pyo
4.69
KB
-rw-r--r--
2018-04-10 19:40
machar.py
10.39
KB
-rw-r--r--
2013-04-07 01:04
machar.pyc
8.44
KB
-rw-r--r--
2018-04-10 19:40
machar.pyo
8.44
KB
-rw-r--r--
2018-04-10 19:40
memmap.py
9.64
KB
-rw-r--r--
2013-04-07 01:04
memmap.pyc
9.64
KB
-rw-r--r--
2018-04-10 19:40
memmap.pyo
9.64
KB
-rw-r--r--
2018-04-10 19:40
multiarray.so
1.25
MB
-rwxr-xr-x
2018-04-10 19:40
multiarray_tests.so
15.23
KB
-rwxr-xr-x
2018-04-10 19:40
numeric.py
72.78
KB
-rw-r--r--
2013-04-07 01:04
numeric.pyc
75.76
KB
-rw-r--r--
2018-04-10 19:40
numeric.pyo
75.76
KB
-rw-r--r--
2018-04-10 19:40
numerictypes.py
28.31
KB
-rw-r--r--
2013-04-07 01:04
numerictypes.pyc
26.95
KB
-rw-r--r--
2018-04-10 19:40
numerictypes.pyo
26.9
KB
-rw-r--r--
2018-04-10 19:40
records.py
26.37
KB
-rw-r--r--
2013-04-07 01:04
records.pyc
23.77
KB
-rw-r--r--
2018-04-10 19:40
records.pyo
23.77
KB
-rw-r--r--
2018-04-10 19:40
scalarmath.so
187.89
KB
-rwxr-xr-x
2018-04-10 19:40
scons_support.py
8.16
KB
-rw-r--r--
2013-04-07 01:04
scons_support.pyc
9.03
KB
-rw-r--r--
2018-04-10 19:40
scons_support.pyo
9.03
KB
-rw-r--r--
2018-04-10 19:40
setup.py
37.73
KB
-rw-r--r--
2018-04-10 19:39
setup.pyc
25.07
KB
-rw-r--r--
2018-04-10 19:40
setup.pyo
25.07
KB
-rw-r--r--
2018-04-10 19:40
setup_common.py
10.38
KB
-rw-r--r--
2013-04-07 01:04
setup_common.pyc
8.83
KB
-rw-r--r--
2018-04-10 19:40
setup_common.pyo
8.83
KB
-rw-r--r--
2018-04-10 19:40
setupscons.py
4.41
KB
-rw-r--r--
2013-04-07 01:04
setupscons.pyc
3.95
KB
-rw-r--r--
2018-04-10 19:40
setupscons.pyo
3.95
KB
-rw-r--r--
2018-04-10 19:40
shape_base.py
6.66
KB
-rw-r--r--
2013-04-07 01:04
shape_base.pyc
7.16
KB
-rw-r--r--
2018-04-10 19:40
shape_base.pyo
7.16
KB
-rw-r--r--
2018-04-10 19:40
umath.so
377.02
KB
-rwxr-xr-x
2018-04-10 19:40
umath_tests.so
15.26
KB
-rwxr-xr-x
2018-04-10 19:40
Save
Rename
__all__ = ['atleast_1d','atleast_2d','atleast_3d','vstack','hstack'] import numeric as _nx from numeric import array, asanyarray, newaxis def atleast_1d(*arys): """ Convert inputs to arrays with at least one dimension. Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved. Parameters ---------- arys1, arys2, ... : array_like One or more input arrays. Returns ------- ret : ndarray An array, or sequence of arrays, each with ``a.ndim >= 1``. Copies are made only if necessary. See Also -------- atleast_2d, atleast_3d Examples -------- >>> np.atleast_1d(1.0) array([ 1.]) >>> x = np.arange(9.0).reshape(3,3) >>> np.atleast_1d(x) array([[ 0., 1., 2.], [ 3., 4., 5.], [ 6., 7., 8.]]) >>> np.atleast_1d(x) is x True >>> np.atleast_1d(1, [3, 4]) [array([1]), array([3, 4])] """ res = [] for ary in arys: ary = asanyarray(ary) if len(ary.shape) == 0 : result = ary.reshape(1) else : result = ary res.append(result) if len(res) == 1: return res[0] else: return res def atleast_2d(*arys): """ View inputs as arrays with at least two dimensions. Parameters ---------- arys1, arys2, ... : array_like One or more array-like sequences. Non-array inputs are converted to arrays. Arrays that already have two or more dimensions are preserved. Returns ------- res, res2, ... : ndarray An array, or tuple of arrays, each with ``a.ndim >= 2``. Copies are avoided where possible, and views with two or more dimensions are returned. See Also -------- atleast_1d, atleast_3d Examples -------- >>> np.atleast_2d(3.0) array([[ 3.]]) >>> x = np.arange(3.0) >>> np.atleast_2d(x) array([[ 0., 1., 2.]]) >>> np.atleast_2d(x).base is x True >>> np.atleast_2d(1, [1, 2], [[1, 2]]) [array([[1]]), array([[1, 2]]), array([[1, 2]])] """ res = [] for ary in arys: ary = asanyarray(ary) if len(ary.shape) == 0 : result = ary.reshape(1, 1) elif len(ary.shape) == 1 : result = ary[newaxis, :] else : result = ary res.append(result) if len(res) == 1: return res[0] else: return res def atleast_3d(*arys): """ View inputs as arrays with at least three dimensions. Parameters ---------- arys1, arys2, ... : array_like One or more array-like sequences. Non-array inputs are converted to arrays. Arrays that already have three or more dimensions are preserved. Returns ------- res1, res2, ... : ndarray An array, or tuple of arrays, each with ``a.ndim >= 3``. Copies are avoided where possible, and views with three or more dimensions are returned. For example, a 1-D array of shape ``(N,)`` becomes a view of shape ``(1, N, 1)``, and a 2-D array of shape ``(M, N)`` becomes a view of shape ``(M, N, 1)``. See Also -------- atleast_1d, atleast_2d Examples -------- >>> np.atleast_3d(3.0) array([[[ 3.]]]) >>> x = np.arange(3.0) >>> np.atleast_3d(x).shape (1, 3, 1) >>> x = np.arange(12.0).reshape(4,3) >>> np.atleast_3d(x).shape (4, 3, 1) >>> np.atleast_3d(x).base is x True >>> for arr in np.atleast_3d([1, 2], [[1, 2]], [[[1, 2]]]): ... print arr, arr.shape ... [[[1] [2]]] (1, 2, 1) [[[1] [2]]] (1, 2, 1) [[[1 2]]] (1, 1, 2) """ res = [] for ary in arys: ary = asanyarray(ary) if len(ary.shape) == 0: result = ary.reshape(1,1,1) elif len(ary.shape) == 1: result = ary[newaxis,:,newaxis] elif len(ary.shape) == 2: result = ary[:,:,newaxis] else: result = ary res.append(result) if len(res) == 1: return res[0] else: return res def vstack(tup): """ Stack arrays in sequence vertically (row wise). Take a sequence of arrays and stack them vertically to make a single array. Rebuild arrays divided by `vsplit`. Parameters ---------- tup : sequence of ndarrays Tuple containing arrays to be stacked. The arrays must have the same shape along all but the first axis. Returns ------- stacked : ndarray The array formed by stacking the given arrays. See Also -------- hstack : Stack arrays in sequence horizontally (column wise). dstack : Stack arrays in sequence depth wise (along third dimension). concatenate : Join a sequence of arrays together. vsplit : Split array into a list of multiple sub-arrays vertically. Notes ----- Equivalent to ``np.concatenate(tup, axis=0)`` if `tup` contains arrays that are at least 2-dimensional. Examples -------- >>> a = np.array([1, 2, 3]) >>> b = np.array([2, 3, 4]) >>> np.vstack((a,b)) array([[1, 2, 3], [2, 3, 4]]) >>> a = np.array([[1], [2], [3]]) >>> b = np.array([[2], [3], [4]]) >>> np.vstack((a,b)) array([[1], [2], [3], [2], [3], [4]]) """ return _nx.concatenate(map(atleast_2d,tup),0) def hstack(tup): """ Stack arrays in sequence horizontally (column wise). Take a sequence of arrays and stack them horizontally to make a single array. Rebuild arrays divided by `hsplit`. Parameters ---------- tup : sequence of ndarrays All arrays must have the same shape along all but the second axis. Returns ------- stacked : ndarray The array formed by stacking the given arrays. See Also -------- vstack : Stack arrays in sequence vertically (row wise). dstack : Stack arrays in sequence depth wise (along third axis). concatenate : Join a sequence of arrays together. hsplit : Split array along second axis. Notes ----- Equivalent to ``np.concatenate(tup, axis=1)`` Examples -------- >>> a = np.array((1,2,3)) >>> b = np.array((2,3,4)) >>> np.hstack((a,b)) array([1, 2, 3, 2, 3, 4]) >>> a = np.array([[1],[2],[3]]) >>> b = np.array([[2],[3],[4]]) >>> np.hstack((a,b)) array([[1, 2], [2, 3], [3, 4]]) """ arrs = map(atleast_1d,tup) # As a special case, dimension 0 of 1-dimensional arrays is "horizontal" if arrs[0].ndim == 1: return _nx.concatenate(arrs, 0) else: return _nx.concatenate(arrs, 1)