Linux server.edchosting.com 4.18.0-553.79.1.lve.el7h.x86_64 #1 SMP Wed Oct 15 16:34:46 UTC 2025 x86_64
LiteSpeed
Server IP : 75.98.162.185 & Your IP : 216.73.216.163
Domains :
Cant Read [ /etc/named.conf ]
User : goons4good
Terminal
Auto Root
Create File
Create Folder
Localroot Suggester
Backdoor Destroyer
Readme
/
lib64 /
python2.7 /
site-packages /
numpy /
core /
Delete
Unzip
Name
Size
Permission
Date
Action
include
[ DIR ]
drwxr-xr-x
2021-09-16 10:54
lib
[ DIR ]
drwxr-xr-x
2021-09-16 10:54
tests
[ DIR ]
drwxr-xr-x
2021-09-16 10:54
__init__.py
1.71
KB
-rw-r--r--
2013-04-07 01:04
__init__.pyc
1.96
KB
-rw-r--r--
2018-04-10 19:40
__init__.pyo
1.96
KB
-rw-r--r--
2018-04-10 19:40
_dotblas.so
23.57
KB
-rwxr-xr-x
2018-04-10 19:40
_dummy.so
6.74
KB
-rwxr-xr-x
2018-04-10 19:40
_internal.py
16.37
KB
-rw-r--r--
2013-04-07 01:04
_internal.pyc
14.11
KB
-rw-r--r--
2018-04-10 19:40
_internal.pyo
14.11
KB
-rw-r--r--
2018-04-10 19:40
_methods.py
3.75
KB
-rw-r--r--
2013-04-07 01:04
_methods.pyc
4.18
KB
-rw-r--r--
2018-04-10 19:40
_methods.pyo
4.18
KB
-rw-r--r--
2018-04-10 19:40
arrayprint.py
25.21
KB
-rw-r--r--
2013-04-07 01:04
arrayprint.pyc
22.85
KB
-rw-r--r--
2018-04-10 19:40
arrayprint.pyo
22.85
KB
-rw-r--r--
2018-04-10 19:40
defchararray.py
70.67
KB
-rw-r--r--
2013-04-07 01:04
defchararray.pyc
78.49
KB
-rw-r--r--
2018-04-10 19:40
defchararray.pyo
78.49
KB
-rw-r--r--
2018-04-10 19:40
fromnumeric.py
79.16
KB
-rw-r--r--
2013-04-07 01:04
fromnumeric.pyc
81.98
KB
-rw-r--r--
2018-04-10 19:40
fromnumeric.pyo
81.98
KB
-rw-r--r--
2018-04-10 19:40
function_base.py
5.34
KB
-rw-r--r--
2013-04-07 01:04
function_base.pyc
5.7
KB
-rw-r--r--
2018-04-10 19:40
function_base.pyo
5.7
KB
-rw-r--r--
2018-04-10 19:40
generate_numpy_api.py
7.24
KB
-rw-r--r--
2013-04-07 01:04
generate_numpy_api.pyc
6.92
KB
-rw-r--r--
2018-04-10 19:40
generate_numpy_api.pyo
6.92
KB
-rw-r--r--
2018-04-10 19:40
getlimits.py
9.15
KB
-rw-r--r--
2013-04-07 01:04
getlimits.pyc
10.45
KB
-rw-r--r--
2018-04-10 19:40
getlimits.pyo
10.45
KB
-rw-r--r--
2018-04-10 19:40
info.py
4.53
KB
-rw-r--r--
2013-04-07 01:04
info.pyc
4.69
KB
-rw-r--r--
2018-04-10 19:40
info.pyo
4.69
KB
-rw-r--r--
2018-04-10 19:40
machar.py
10.39
KB
-rw-r--r--
2013-04-07 01:04
machar.pyc
8.44
KB
-rw-r--r--
2018-04-10 19:40
machar.pyo
8.44
KB
-rw-r--r--
2018-04-10 19:40
memmap.py
9.64
KB
-rw-r--r--
2013-04-07 01:04
memmap.pyc
9.64
KB
-rw-r--r--
2018-04-10 19:40
memmap.pyo
9.64
KB
-rw-r--r--
2018-04-10 19:40
multiarray.so
1.25
MB
-rwxr-xr-x
2018-04-10 19:40
multiarray_tests.so
15.23
KB
-rwxr-xr-x
2018-04-10 19:40
numeric.py
72.78
KB
-rw-r--r--
2013-04-07 01:04
numeric.pyc
75.76
KB
-rw-r--r--
2018-04-10 19:40
numeric.pyo
75.76
KB
-rw-r--r--
2018-04-10 19:40
numerictypes.py
28.31
KB
-rw-r--r--
2013-04-07 01:04
numerictypes.pyc
26.95
KB
-rw-r--r--
2018-04-10 19:40
numerictypes.pyo
26.9
KB
-rw-r--r--
2018-04-10 19:40
records.py
26.37
KB
-rw-r--r--
2013-04-07 01:04
records.pyc
23.77
KB
-rw-r--r--
2018-04-10 19:40
records.pyo
23.77
KB
-rw-r--r--
2018-04-10 19:40
scalarmath.so
187.89
KB
-rwxr-xr-x
2018-04-10 19:40
scons_support.py
8.16
KB
-rw-r--r--
2013-04-07 01:04
scons_support.pyc
9.03
KB
-rw-r--r--
2018-04-10 19:40
scons_support.pyo
9.03
KB
-rw-r--r--
2018-04-10 19:40
setup.py
37.73
KB
-rw-r--r--
2018-04-10 19:39
setup.pyc
25.07
KB
-rw-r--r--
2018-04-10 19:40
setup.pyo
25.07
KB
-rw-r--r--
2018-04-10 19:40
setup_common.py
10.38
KB
-rw-r--r--
2013-04-07 01:04
setup_common.pyc
8.83
KB
-rw-r--r--
2018-04-10 19:40
setup_common.pyo
8.83
KB
-rw-r--r--
2018-04-10 19:40
setupscons.py
4.41
KB
-rw-r--r--
2013-04-07 01:04
setupscons.pyc
3.95
KB
-rw-r--r--
2018-04-10 19:40
setupscons.pyo
3.95
KB
-rw-r--r--
2018-04-10 19:40
shape_base.py
6.66
KB
-rw-r--r--
2013-04-07 01:04
shape_base.pyc
7.16
KB
-rw-r--r--
2018-04-10 19:40
shape_base.pyo
7.16
KB
-rw-r--r--
2018-04-10 19:40
umath.so
377.02
KB
-rwxr-xr-x
2018-04-10 19:40
umath_tests.so
15.26
KB
-rwxr-xr-x
2018-04-10 19:40
Save
Rename
# Array methods which are called by the both the C-code for the method # and the Python code for the NumPy-namespace function from numpy.core import multiarray as mu from numpy.core import umath as um from numpy.core.numeric import asanyarray def _amax(a, axis=None, out=None, keepdims=False): return um.maximum.reduce(a, axis=axis, out=out, keepdims=keepdims) def _amin(a, axis=None, out=None, keepdims=False): return um.minimum.reduce(a, axis=axis, out=out, keepdims=keepdims) def _sum(a, axis=None, dtype=None, out=None, keepdims=False): return um.add.reduce(a, axis=axis, dtype=dtype, out=out, keepdims=keepdims) def _prod(a, axis=None, dtype=None, out=None, keepdims=False): return um.multiply.reduce(a, axis=axis, dtype=dtype, out=out, keepdims=keepdims) def _any(a, axis=None, dtype=None, out=None, keepdims=False): return um.logical_or.reduce(a, axis=axis, dtype=dtype, out=out, keepdims=keepdims) def _all(a, axis=None, dtype=None, out=None, keepdims=False): return um.logical_and.reduce(a, axis=axis, dtype=dtype, out=out, keepdims=keepdims) def _count_reduce_items(arr, axis): if axis is None: axis = tuple(xrange(arr.ndim)) if not isinstance(axis, tuple): axis = (axis,) items = 1 for ax in axis: items *= arr.shape[ax] return items def _mean(a, axis=None, dtype=None, out=None, keepdims=False): arr = asanyarray(a) # Upgrade bool, unsigned int, and int to float64 if dtype is None and arr.dtype.kind in ['b','u','i']: ret = um.add.reduce(arr, axis=axis, dtype='f8', out=out, keepdims=keepdims) else: ret = um.add.reduce(arr, axis=axis, dtype=dtype, out=out, keepdims=keepdims) rcount = _count_reduce_items(arr, axis) if isinstance(ret, mu.ndarray): ret = um.true_divide(ret, rcount, out=ret, casting='unsafe', subok=False) else: ret = ret / float(rcount) return ret def _var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False): arr = asanyarray(a) # First compute the mean, saving 'rcount' for reuse later if dtype is None and arr.dtype.kind in ['b','u','i']: arrmean = um.add.reduce(arr, axis=axis, dtype='f8', keepdims=True) else: arrmean = um.add.reduce(arr, axis=axis, dtype=dtype, keepdims=True) rcount = _count_reduce_items(arr, axis) if isinstance(arrmean, mu.ndarray): arrmean = um.true_divide(arrmean, rcount, out=arrmean, casting='unsafe', subok=False) else: arrmean = arrmean / float(rcount) # arr - arrmean x = arr - arrmean # (arr - arrmean) ** 2 if arr.dtype.kind == 'c': x = um.multiply(x, um.conjugate(x), out=x).real else: x = um.multiply(x, x, out=x) # add.reduce((arr - arrmean) ** 2, axis) ret = um.add.reduce(x, axis=axis, dtype=dtype, out=out, keepdims=keepdims) # add.reduce((arr - arrmean) ** 2, axis) / (n - ddof) if not keepdims and isinstance(rcount, mu.ndarray): rcount = rcount.squeeze(axis=axis) rcount -= ddof if isinstance(ret, mu.ndarray): ret = um.true_divide(ret, rcount, out=ret, casting='unsafe', subok=False) else: ret = ret / float(rcount) return ret def _std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False): ret = _var(a, axis=axis, dtype=dtype, out=out, ddof=ddof, keepdims=keepdims) if isinstance(ret, mu.ndarray): ret = um.sqrt(ret, out=ret) else: ret = um.sqrt(ret) return ret