Linux server.edchosting.com 4.18.0-553.79.1.lve.el7h.x86_64 #1 SMP Wed Oct 15 16:34:46 UTC 2025 x86_64
LiteSpeed
Server IP : 75.98.162.185 & Your IP : 216.73.216.163
Domains :
Cant Read [ /etc/named.conf ]
User : goons4good
Terminal
Auto Root
Create File
Create Folder
Localroot Suggester
Backdoor Destroyer
Readme
/
lib64 /
python2.7 /
site-packages /
numpy /
core /
Delete
Unzip
Name
Size
Permission
Date
Action
include
[ DIR ]
drwxr-xr-x
2021-09-16 10:54
lib
[ DIR ]
drwxr-xr-x
2021-09-16 10:54
tests
[ DIR ]
drwxr-xr-x
2021-09-16 10:54
__init__.py
1.71
KB
-rw-r--r--
2013-04-07 01:04
__init__.pyc
1.96
KB
-rw-r--r--
2018-04-10 19:40
__init__.pyo
1.96
KB
-rw-r--r--
2018-04-10 19:40
_dotblas.so
23.57
KB
-rwxr-xr-x
2018-04-10 19:40
_dummy.so
6.74
KB
-rwxr-xr-x
2018-04-10 19:40
_internal.py
16.37
KB
-rw-r--r--
2013-04-07 01:04
_internal.pyc
14.11
KB
-rw-r--r--
2018-04-10 19:40
_internal.pyo
14.11
KB
-rw-r--r--
2018-04-10 19:40
_methods.py
3.75
KB
-rw-r--r--
2013-04-07 01:04
_methods.pyc
4.18
KB
-rw-r--r--
2018-04-10 19:40
_methods.pyo
4.18
KB
-rw-r--r--
2018-04-10 19:40
arrayprint.py
25.21
KB
-rw-r--r--
2013-04-07 01:04
arrayprint.pyc
22.85
KB
-rw-r--r--
2018-04-10 19:40
arrayprint.pyo
22.85
KB
-rw-r--r--
2018-04-10 19:40
defchararray.py
70.67
KB
-rw-r--r--
2013-04-07 01:04
defchararray.pyc
78.49
KB
-rw-r--r--
2018-04-10 19:40
defchararray.pyo
78.49
KB
-rw-r--r--
2018-04-10 19:40
fromnumeric.py
79.16
KB
-rw-r--r--
2013-04-07 01:04
fromnumeric.pyc
81.98
KB
-rw-r--r--
2018-04-10 19:40
fromnumeric.pyo
81.98
KB
-rw-r--r--
2018-04-10 19:40
function_base.py
5.34
KB
-rw-r--r--
2013-04-07 01:04
function_base.pyc
5.7
KB
-rw-r--r--
2018-04-10 19:40
function_base.pyo
5.7
KB
-rw-r--r--
2018-04-10 19:40
generate_numpy_api.py
7.24
KB
-rw-r--r--
2013-04-07 01:04
generate_numpy_api.pyc
6.92
KB
-rw-r--r--
2018-04-10 19:40
generate_numpy_api.pyo
6.92
KB
-rw-r--r--
2018-04-10 19:40
getlimits.py
9.15
KB
-rw-r--r--
2013-04-07 01:04
getlimits.pyc
10.45
KB
-rw-r--r--
2018-04-10 19:40
getlimits.pyo
10.45
KB
-rw-r--r--
2018-04-10 19:40
info.py
4.53
KB
-rw-r--r--
2013-04-07 01:04
info.pyc
4.69
KB
-rw-r--r--
2018-04-10 19:40
info.pyo
4.69
KB
-rw-r--r--
2018-04-10 19:40
machar.py
10.39
KB
-rw-r--r--
2013-04-07 01:04
machar.pyc
8.44
KB
-rw-r--r--
2018-04-10 19:40
machar.pyo
8.44
KB
-rw-r--r--
2018-04-10 19:40
memmap.py
9.64
KB
-rw-r--r--
2013-04-07 01:04
memmap.pyc
9.64
KB
-rw-r--r--
2018-04-10 19:40
memmap.pyo
9.64
KB
-rw-r--r--
2018-04-10 19:40
multiarray.so
1.25
MB
-rwxr-xr-x
2018-04-10 19:40
multiarray_tests.so
15.23
KB
-rwxr-xr-x
2018-04-10 19:40
numeric.py
72.78
KB
-rw-r--r--
2013-04-07 01:04
numeric.pyc
75.76
KB
-rw-r--r--
2018-04-10 19:40
numeric.pyo
75.76
KB
-rw-r--r--
2018-04-10 19:40
numerictypes.py
28.31
KB
-rw-r--r--
2013-04-07 01:04
numerictypes.pyc
26.95
KB
-rw-r--r--
2018-04-10 19:40
numerictypes.pyo
26.9
KB
-rw-r--r--
2018-04-10 19:40
records.py
26.37
KB
-rw-r--r--
2013-04-07 01:04
records.pyc
23.77
KB
-rw-r--r--
2018-04-10 19:40
records.pyo
23.77
KB
-rw-r--r--
2018-04-10 19:40
scalarmath.so
187.89
KB
-rwxr-xr-x
2018-04-10 19:40
scons_support.py
8.16
KB
-rw-r--r--
2013-04-07 01:04
scons_support.pyc
9.03
KB
-rw-r--r--
2018-04-10 19:40
scons_support.pyo
9.03
KB
-rw-r--r--
2018-04-10 19:40
setup.py
37.73
KB
-rw-r--r--
2018-04-10 19:39
setup.pyc
25.07
KB
-rw-r--r--
2018-04-10 19:40
setup.pyo
25.07
KB
-rw-r--r--
2018-04-10 19:40
setup_common.py
10.38
KB
-rw-r--r--
2013-04-07 01:04
setup_common.pyc
8.83
KB
-rw-r--r--
2018-04-10 19:40
setup_common.pyo
8.83
KB
-rw-r--r--
2018-04-10 19:40
setupscons.py
4.41
KB
-rw-r--r--
2013-04-07 01:04
setupscons.pyc
3.95
KB
-rw-r--r--
2018-04-10 19:40
setupscons.pyo
3.95
KB
-rw-r--r--
2018-04-10 19:40
shape_base.py
6.66
KB
-rw-r--r--
2013-04-07 01:04
shape_base.pyc
7.16
KB
-rw-r--r--
2018-04-10 19:40
shape_base.pyo
7.16
KB
-rw-r--r--
2018-04-10 19:40
umath.so
377.02
KB
-rwxr-xr-x
2018-04-10 19:40
umath_tests.so
15.26
KB
-rwxr-xr-x
2018-04-10 19:40
Save
Rename
__all__ = ['logspace', 'linspace'] import numeric as _nx from numeric import array def linspace(start, stop, num=50, endpoint=True, retstep=False): """ Return evenly spaced numbers over a specified interval. Returns `num` evenly spaced samples, calculated over the interval [`start`, `stop` ]. The endpoint of the interval can optionally be excluded. Parameters ---------- start : scalar The starting value of the sequence. stop : scalar The end value of the sequence, unless `endpoint` is set to False. In that case, the sequence consists of all but the last of ``num + 1`` evenly spaced samples, so that `stop` is excluded. Note that the step size changes when `endpoint` is False. num : int, optional Number of samples to generate. Default is 50. endpoint : bool, optional If True, `stop` is the last sample. Otherwise, it is not included. Default is True. retstep : bool, optional If True, return (`samples`, `step`), where `step` is the spacing between samples. Returns ------- samples : ndarray There are `num` equally spaced samples in the closed interval ``[start, stop]`` or the half-open interval ``[start, stop)`` (depending on whether `endpoint` is True or False). step : float (only if `retstep` is True) Size of spacing between samples. See Also -------- arange : Similar to `linspace`, but uses a step size (instead of the number of samples). logspace : Samples uniformly distributed in log space. Examples -------- >>> np.linspace(2.0, 3.0, num=5) array([ 2. , 2.25, 2.5 , 2.75, 3. ]) >>> np.linspace(2.0, 3.0, num=5, endpoint=False) array([ 2. , 2.2, 2.4, 2.6, 2.8]) >>> np.linspace(2.0, 3.0, num=5, retstep=True) (array([ 2. , 2.25, 2.5 , 2.75, 3. ]), 0.25) Graphical illustration: >>> import matplotlib.pyplot as plt >>> N = 8 >>> y = np.zeros(N) >>> x1 = np.linspace(0, 10, N, endpoint=True) >>> x2 = np.linspace(0, 10, N, endpoint=False) >>> plt.plot(x1, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(x2, y + 0.5, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim([-0.5, 1]) (-0.5, 1) >>> plt.show() """ num = int(num) if num <= 0: return array([], float) if endpoint: if num == 1: return array([float(start)]) step = (stop-start)/float((num-1)) y = _nx.arange(0, num) * step + start y[-1] = stop else: step = (stop-start)/float(num) y = _nx.arange(0, num) * step + start if retstep: return y, step else: return y def logspace(start,stop,num=50,endpoint=True,base=10.0): """ Return numbers spaced evenly on a log scale. In linear space, the sequence starts at ``base ** start`` (`base` to the power of `start`) and ends with ``base ** stop`` (see `endpoint` below). Parameters ---------- start : float ``base ** start`` is the starting value of the sequence. stop : float ``base ** stop`` is the final value of the sequence, unless `endpoint` is False. In that case, ``num + 1`` values are spaced over the interval in log-space, of which all but the last (a sequence of length ``num``) are returned. num : integer, optional Number of samples to generate. Default is 50. endpoint : boolean, optional If true, `stop` is the last sample. Otherwise, it is not included. Default is True. base : float, optional The base of the log space. The step size between the elements in ``ln(samples) / ln(base)`` (or ``log_base(samples)``) is uniform. Default is 10.0. Returns ------- samples : ndarray `num` samples, equally spaced on a log scale. See Also -------- arange : Similar to linspace, with the step size specified instead of the number of samples. Note that, when used with a float endpoint, the endpoint may or may not be included. linspace : Similar to logspace, but with the samples uniformly distributed in linear space, instead of log space. Notes ----- Logspace is equivalent to the code >>> y = np.linspace(start, stop, num=num, endpoint=endpoint) ... # doctest: +SKIP >>> power(base, y) ... # doctest: +SKIP Examples -------- >>> np.logspace(2.0, 3.0, num=4) array([ 100. , 215.443469 , 464.15888336, 1000. ]) >>> np.logspace(2.0, 3.0, num=4, endpoint=False) array([ 100. , 177.827941 , 316.22776602, 562.34132519]) >>> np.logspace(2.0, 3.0, num=4, base=2.0) array([ 4. , 5.0396842 , 6.34960421, 8. ]) Graphical illustration: >>> import matplotlib.pyplot as plt >>> N = 10 >>> x1 = np.logspace(0.1, 1, N, endpoint=True) >>> x2 = np.logspace(0.1, 1, N, endpoint=False) >>> y = np.zeros(N) >>> plt.plot(x1, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(x2, y + 0.5, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim([-0.5, 1]) (-0.5, 1) >>> plt.show() """ y = linspace(start,stop,num=num,endpoint=endpoint) return _nx.power(base,y)