Linux server.edchosting.com 4.18.0-553.79.1.lve.el7h.x86_64 #1 SMP Wed Oct 15 16:34:46 UTC 2025 x86_64
LiteSpeed
Server IP : 75.98.162.185 & Your IP : 216.73.216.163
Domains :
Cant Read [ /etc/named.conf ]
User : goons4good
Terminal
Auto Root
Create File
Create Folder
Localroot Suggester
Backdoor Destroyer
Readme
/
lib64 /
python2.7 /
site-packages /
numpy /
lib /
Delete
Unzip
Name
Size
Permission
Date
Action
benchmarks
[ DIR ]
drwxr-xr-x
2021-09-16 10:54
tests
[ DIR ]
drwxr-xr-x
2021-09-16 10:54
__init__.py
972
B
-rw-r--r--
2013-04-07 01:04
__init__.pyc
1.03
KB
-rw-r--r--
2018-04-10 19:40
__init__.pyo
1.03
KB
-rw-r--r--
2018-04-10 19:40
_compiled_base.so
27.96
KB
-rwxr-xr-x
2018-04-10 19:40
_datasource.py
20.13
KB
-rw-r--r--
2013-04-07 01:04
_datasource.pyc
20.46
KB
-rw-r--r--
2018-04-10 19:40
_datasource.pyo
20.46
KB
-rw-r--r--
2018-04-10 19:40
_iotools.py
29.54
KB
-rw-r--r--
2013-04-07 01:04
_iotools.pyc
28.3
KB
-rw-r--r--
2018-04-10 19:40
_iotools.pyo
28.3
KB
-rw-r--r--
2018-04-10 19:40
arraypad.py
26.12
KB
-rw-r--r--
2013-04-07 01:04
arraypad.pyc
24.33
KB
-rw-r--r--
2018-04-10 19:40
arraypad.pyo
24.33
KB
-rw-r--r--
2018-04-10 19:40
arraysetops.py
11.67
KB
-rw-r--r--
2013-04-07 01:04
arraysetops.pyc
11.45
KB
-rw-r--r--
2018-04-10 19:40
arraysetops.pyo
11.45
KB
-rw-r--r--
2018-04-10 19:40
arrayterator.py
7.07
KB
-rw-r--r--
2013-04-07 01:04
arrayterator.pyc
7.56
KB
-rw-r--r--
2018-04-10 19:40
arrayterator.pyo
7.56
KB
-rw-r--r--
2018-04-10 19:40
financial.py
22.97
KB
-rw-r--r--
2013-04-07 01:04
financial.pyc
23.53
KB
-rw-r--r--
2018-04-10 19:40
financial.pyo
23.53
KB
-rw-r--r--
2018-04-10 19:40
format.py
19.31
KB
-rw-r--r--
2013-04-07 01:04
format.pyc
17.33
KB
-rw-r--r--
2018-04-10 19:40
format.pyo
17.33
KB
-rw-r--r--
2018-04-10 19:40
function_base.py
112.61
KB
-rw-r--r--
2013-04-07 01:04
function_base.pyc
109.34
KB
-rw-r--r--
2018-04-10 19:40
function_base.pyo
109.3
KB
-rw-r--r--
2018-04-10 19:40
index_tricks.py
25.51
KB
-rw-r--r--
2013-04-07 01:04
index_tricks.pyc
26.43
KB
-rw-r--r--
2018-04-10 19:40
index_tricks.pyo
26.43
KB
-rw-r--r--
2018-04-10 19:40
info.py
6.09
KB
-rw-r--r--
2013-04-07 01:04
info.pyc
6.27
KB
-rw-r--r--
2018-04-10 19:40
info.pyo
6.27
KB
-rw-r--r--
2018-04-10 19:40
npyio.py
63.79
KB
-rw-r--r--
2013-04-07 01:04
npyio.pyc
51.81
KB
-rw-r--r--
2018-04-10 19:40
npyio.pyo
51.81
KB
-rw-r--r--
2018-04-10 19:40
polynomial.py
36.57
KB
-rw-r--r--
2013-04-07 01:04
polynomial.pyc
38.57
KB
-rw-r--r--
2018-04-10 19:40
polynomial.pyo
38.57
KB
-rw-r--r--
2018-04-10 19:40
recfunctions.py
34.06
KB
-rw-r--r--
2013-04-07 01:04
recfunctions.pyc
29.82
KB
-rw-r--r--
2018-04-10 19:40
recfunctions.pyo
29.82
KB
-rw-r--r--
2018-04-10 19:40
scimath.py
13.68
KB
-rw-r--r--
2013-04-07 01:04
scimath.pyc
15.5
KB
-rw-r--r--
2018-04-10 19:40
scimath.pyo
15.5
KB
-rw-r--r--
2018-04-10 19:40
setup.py
588
B
-rw-r--r--
2013-04-07 01:04
setup.pyc
916
B
-rw-r--r--
2018-04-10 19:40
setup.pyo
916
B
-rw-r--r--
2018-04-10 19:40
setupscons.py
470
B
-rw-r--r--
2013-04-07 01:04
setupscons.pyc
822
B
-rw-r--r--
2018-04-10 19:40
setupscons.pyo
822
B
-rw-r--r--
2018-04-10 19:40
shape_base.py
23.79
KB
-rw-r--r--
2013-04-07 01:04
shape_base.pyc
24.56
KB
-rw-r--r--
2018-04-10 19:40
shape_base.pyo
24.56
KB
-rw-r--r--
2018-04-10 19:40
stride_tricks.py
3.89
KB
-rw-r--r--
2013-04-07 01:04
stride_tricks.pyc
3.66
KB
-rw-r--r--
2018-04-10 19:40
stride_tricks.pyo
3.66
KB
-rw-r--r--
2018-04-10 19:40
twodim_base.py
23.08
KB
-rw-r--r--
2013-04-07 01:04
twodim_base.pyc
25.48
KB
-rw-r--r--
2018-04-10 19:40
twodim_base.pyo
25.48
KB
-rw-r--r--
2018-04-10 19:40
type_check.py
15.44
KB
-rw-r--r--
2013-04-07 01:04
type_check.pyc
16.49
KB
-rw-r--r--
2018-04-10 19:40
type_check.pyo
16.49
KB
-rw-r--r--
2018-04-10 19:40
ufunclike.py
4.67
KB
-rw-r--r--
2013-04-07 01:04
ufunclike.pyc
5.34
KB
-rw-r--r--
2018-04-10 19:40
ufunclike.pyo
5.34
KB
-rw-r--r--
2018-04-10 19:40
user_array.py
7.3
KB
-rw-r--r--
2013-04-07 01:04
user_array.pyc
15.35
KB
-rw-r--r--
2018-04-10 19:40
user_array.pyo
15.35
KB
-rw-r--r--
2018-04-10 19:40
utils.py
35.92
KB
-rw-r--r--
2013-04-07 01:04
utils.pyc
32.34
KB
-rw-r--r--
2018-04-10 19:40
utils.pyo
32.34
KB
-rw-r--r--
2018-04-10 19:40
Save
Rename
""" Utilities that manipulate strides to achieve desirable effects. An explanation of strides can be found in the "ndarray.rst" file in the NumPy reference guide. """ import numpy as np __all__ = ['broadcast_arrays'] class DummyArray(object): """ Dummy object that just exists to hang __array_interface__ dictionaries and possibly keep alive a reference to a base array. """ def __init__(self, interface, base=None): self.__array_interface__ = interface self.base = base def as_strided(x, shape=None, strides=None): """ Make an ndarray from the given array with the given shape and strides. """ interface = dict(x.__array_interface__) if shape is not None: interface['shape'] = tuple(shape) if strides is not None: interface['strides'] = tuple(strides) return np.asarray(DummyArray(interface, base=x)) def broadcast_arrays(*args): """ Broadcast any number of arrays against each other. Parameters ---------- `*args` : array_likes The arrays to broadcast. Returns ------- broadcasted : list of arrays These arrays are views on the original arrays. They are typically not contiguous. Furthermore, more than one element of a broadcasted array may refer to a single memory location. If you need to write to the arrays, make copies first. Examples -------- >>> x = np.array([[1,2,3]]) >>> y = np.array([[1],[2],[3]]) >>> np.broadcast_arrays(x, y) [array([[1, 2, 3], [1, 2, 3], [1, 2, 3]]), array([[1, 1, 1], [2, 2, 2], [3, 3, 3]])] Here is a useful idiom for getting contiguous copies instead of non-contiguous views. >>> map(np.array, np.broadcast_arrays(x, y)) [array([[1, 2, 3], [1, 2, 3], [1, 2, 3]]), array([[1, 1, 1], [2, 2, 2], [3, 3, 3]])] """ args = map(np.asarray, args) shapes = [x.shape for x in args] if len(set(shapes)) == 1: # Common case where nothing needs to be broadcasted. return args shapes = [list(s) for s in shapes] strides = [list(x.strides) for x in args] nds = [len(s) for s in shapes] biggest = max(nds) # Go through each array and prepend dimensions of length 1 to each of the # shapes in order to make the number of dimensions equal. for i in range(len(args)): diff = biggest - nds[i] if diff > 0: shapes[i] = [1] * diff + shapes[i] strides[i] = [0] * diff + strides[i] # Chech each dimension for compatibility. A dimension length of 1 is # accepted as compatible with any other length. common_shape = [] for axis in range(biggest): lengths = [s[axis] for s in shapes] unique = set(lengths + [1]) if len(unique) > 2: # There must be at least two non-1 lengths for this axis. raise ValueError("shape mismatch: two or more arrays have " "incompatible dimensions on axis %r." % (axis,)) elif len(unique) == 2: # There is exactly one non-1 length. The common shape will take this # value. unique.remove(1) new_length = unique.pop() common_shape.append(new_length) # For each array, if this axis is being broadcasted from a length of # 1, then set its stride to 0 so that it repeats its data. for i in range(len(args)): if shapes[i][axis] == 1: shapes[i][axis] = new_length strides[i][axis] = 0 else: # Every array has a length of 1 on this axis. Strides can be left # alone as nothing is broadcasted. common_shape.append(1) # Construct the new arrays. broadcasted = [as_strided(x, shape=sh, strides=st) for (x,sh,st) in zip(args, shapes, strides)] return broadcasted