Linux server.edchosting.com 4.18.0-553.79.1.lve.el7h.x86_64 #1 SMP Wed Oct 15 16:34:46 UTC 2025 x86_64
LiteSpeed
Server IP : 75.98.162.185 & Your IP : 216.73.216.163
Domains :
Cant Read [ /etc/named.conf ]
User : goons4good
Terminal
Auto Root
Create File
Create Folder
Localroot Suggester
Backdoor Destroyer
Readme
/
lib64 /
python2.7 /
site-packages /
numpy /
lib /
Delete
Unzip
Name
Size
Permission
Date
Action
benchmarks
[ DIR ]
drwxr-xr-x
2021-09-16 10:54
tests
[ DIR ]
drwxr-xr-x
2021-09-16 10:54
__init__.py
972
B
-rw-r--r--
2013-04-07 01:04
__init__.pyc
1.03
KB
-rw-r--r--
2018-04-10 19:40
__init__.pyo
1.03
KB
-rw-r--r--
2018-04-10 19:40
_compiled_base.so
27.96
KB
-rwxr-xr-x
2018-04-10 19:40
_datasource.py
20.13
KB
-rw-r--r--
2013-04-07 01:04
_datasource.pyc
20.46
KB
-rw-r--r--
2018-04-10 19:40
_datasource.pyo
20.46
KB
-rw-r--r--
2018-04-10 19:40
_iotools.py
29.54
KB
-rw-r--r--
2013-04-07 01:04
_iotools.pyc
28.3
KB
-rw-r--r--
2018-04-10 19:40
_iotools.pyo
28.3
KB
-rw-r--r--
2018-04-10 19:40
arraypad.py
26.12
KB
-rw-r--r--
2013-04-07 01:04
arraypad.pyc
24.33
KB
-rw-r--r--
2018-04-10 19:40
arraypad.pyo
24.33
KB
-rw-r--r--
2018-04-10 19:40
arraysetops.py
11.67
KB
-rw-r--r--
2013-04-07 01:04
arraysetops.pyc
11.45
KB
-rw-r--r--
2018-04-10 19:40
arraysetops.pyo
11.45
KB
-rw-r--r--
2018-04-10 19:40
arrayterator.py
7.07
KB
-rw-r--r--
2013-04-07 01:04
arrayterator.pyc
7.56
KB
-rw-r--r--
2018-04-10 19:40
arrayterator.pyo
7.56
KB
-rw-r--r--
2018-04-10 19:40
financial.py
22.97
KB
-rw-r--r--
2013-04-07 01:04
financial.pyc
23.53
KB
-rw-r--r--
2018-04-10 19:40
financial.pyo
23.53
KB
-rw-r--r--
2018-04-10 19:40
format.py
19.31
KB
-rw-r--r--
2013-04-07 01:04
format.pyc
17.33
KB
-rw-r--r--
2018-04-10 19:40
format.pyo
17.33
KB
-rw-r--r--
2018-04-10 19:40
function_base.py
112.61
KB
-rw-r--r--
2013-04-07 01:04
function_base.pyc
109.34
KB
-rw-r--r--
2018-04-10 19:40
function_base.pyo
109.3
KB
-rw-r--r--
2018-04-10 19:40
index_tricks.py
25.51
KB
-rw-r--r--
2013-04-07 01:04
index_tricks.pyc
26.43
KB
-rw-r--r--
2018-04-10 19:40
index_tricks.pyo
26.43
KB
-rw-r--r--
2018-04-10 19:40
info.py
6.09
KB
-rw-r--r--
2013-04-07 01:04
info.pyc
6.27
KB
-rw-r--r--
2018-04-10 19:40
info.pyo
6.27
KB
-rw-r--r--
2018-04-10 19:40
npyio.py
63.79
KB
-rw-r--r--
2013-04-07 01:04
npyio.pyc
51.81
KB
-rw-r--r--
2018-04-10 19:40
npyio.pyo
51.81
KB
-rw-r--r--
2018-04-10 19:40
polynomial.py
36.57
KB
-rw-r--r--
2013-04-07 01:04
polynomial.pyc
38.57
KB
-rw-r--r--
2018-04-10 19:40
polynomial.pyo
38.57
KB
-rw-r--r--
2018-04-10 19:40
recfunctions.py
34.06
KB
-rw-r--r--
2013-04-07 01:04
recfunctions.pyc
29.82
KB
-rw-r--r--
2018-04-10 19:40
recfunctions.pyo
29.82
KB
-rw-r--r--
2018-04-10 19:40
scimath.py
13.68
KB
-rw-r--r--
2013-04-07 01:04
scimath.pyc
15.5
KB
-rw-r--r--
2018-04-10 19:40
scimath.pyo
15.5
KB
-rw-r--r--
2018-04-10 19:40
setup.py
588
B
-rw-r--r--
2013-04-07 01:04
setup.pyc
916
B
-rw-r--r--
2018-04-10 19:40
setup.pyo
916
B
-rw-r--r--
2018-04-10 19:40
setupscons.py
470
B
-rw-r--r--
2013-04-07 01:04
setupscons.pyc
822
B
-rw-r--r--
2018-04-10 19:40
setupscons.pyo
822
B
-rw-r--r--
2018-04-10 19:40
shape_base.py
23.79
KB
-rw-r--r--
2013-04-07 01:04
shape_base.pyc
24.56
KB
-rw-r--r--
2018-04-10 19:40
shape_base.pyo
24.56
KB
-rw-r--r--
2018-04-10 19:40
stride_tricks.py
3.89
KB
-rw-r--r--
2013-04-07 01:04
stride_tricks.pyc
3.66
KB
-rw-r--r--
2018-04-10 19:40
stride_tricks.pyo
3.66
KB
-rw-r--r--
2018-04-10 19:40
twodim_base.py
23.08
KB
-rw-r--r--
2013-04-07 01:04
twodim_base.pyc
25.48
KB
-rw-r--r--
2018-04-10 19:40
twodim_base.pyo
25.48
KB
-rw-r--r--
2018-04-10 19:40
type_check.py
15.44
KB
-rw-r--r--
2013-04-07 01:04
type_check.pyc
16.49
KB
-rw-r--r--
2018-04-10 19:40
type_check.pyo
16.49
KB
-rw-r--r--
2018-04-10 19:40
ufunclike.py
4.67
KB
-rw-r--r--
2013-04-07 01:04
ufunclike.pyc
5.34
KB
-rw-r--r--
2018-04-10 19:40
ufunclike.pyo
5.34
KB
-rw-r--r--
2018-04-10 19:40
user_array.py
7.3
KB
-rw-r--r--
2013-04-07 01:04
user_array.pyc
15.35
KB
-rw-r--r--
2018-04-10 19:40
user_array.pyo
15.35
KB
-rw-r--r--
2018-04-10 19:40
utils.py
35.92
KB
-rw-r--r--
2013-04-07 01:04
utils.pyc
32.34
KB
-rw-r--r--
2018-04-10 19:40
utils.pyo
32.34
KB
-rw-r--r--
2018-04-10 19:40
Save
Rename
""" Module of functions that are like ufuncs in acting on arrays and optionally storing results in an output array. """ __all__ = ['fix', 'isneginf', 'isposinf'] import numpy.core.numeric as nx def fix(x, y=None): """ Round to nearest integer towards zero. Round an array of floats element-wise to nearest integer towards zero. The rounded values are returned as floats. Parameters ---------- x : array_like An array of floats to be rounded y : ndarray, optional Output array Returns ------- out : ndarray of floats The array of rounded numbers See Also -------- trunc, floor, ceil around : Round to given number of decimals Examples -------- >>> np.fix(3.14) 3.0 >>> np.fix(3) 3.0 >>> np.fix([2.1, 2.9, -2.1, -2.9]) array([ 2., 2., -2., -2.]) """ x = nx.asanyarray(x) y1 = nx.floor(x) y2 = nx.ceil(x) if y is None: y = nx.asanyarray(y1) y[...] = nx.where(x >= 0, y1, y2) return y def isposinf(x, y=None): """ Test element-wise for positive infinity, return result as bool array. Parameters ---------- x : array_like The input array. y : array_like, optional A boolean array with the same shape as `x` to store the result. Returns ------- y : ndarray A boolean array with the same dimensions as the input. If second argument is not supplied then a boolean array is returned with values True where the corresponding element of the input is positive infinity and values False where the element of the input is not positive infinity. If a second argument is supplied the result is stored there. If the type of that array is a numeric type the result is represented as zeros and ones, if the type is boolean then as False and True. The return value `y` is then a reference to that array. See Also -------- isinf, isneginf, isfinite, isnan Notes ----- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). Errors result if the second argument is also supplied when `x` is a scalar input, or if first and second arguments have different shapes. Examples -------- >>> np.isposinf(np.PINF) array(True, dtype=bool) >>> np.isposinf(np.inf) array(True, dtype=bool) >>> np.isposinf(np.NINF) array(False, dtype=bool) >>> np.isposinf([-np.inf, 0., np.inf]) array([False, False, True], dtype=bool) >>> x = np.array([-np.inf, 0., np.inf]) >>> y = np.array([2, 2, 2]) >>> np.isposinf(x, y) array([0, 0, 1]) >>> y array([0, 0, 1]) """ if y is None: x = nx.asarray(x) y = nx.empty(x.shape, dtype=nx.bool_) nx.logical_and(nx.isinf(x), ~nx.signbit(x), y) return y def isneginf(x, y=None): """ Test element-wise for negative infinity, return result as bool array. Parameters ---------- x : array_like The input array. y : array_like, optional A boolean array with the same shape and type as `x` to store the result. Returns ------- y : ndarray A boolean array with the same dimensions as the input. If second argument is not supplied then a numpy boolean array is returned with values True where the corresponding element of the input is negative infinity and values False where the element of the input is not negative infinity. If a second argument is supplied the result is stored there. If the type of that array is a numeric type the result is represented as zeros and ones, if the type is boolean then as False and True. The return value `y` is then a reference to that array. See Also -------- isinf, isposinf, isnan, isfinite Notes ----- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). Errors result if the second argument is also supplied when x is a scalar input, or if first and second arguments have different shapes. Examples -------- >>> np.isneginf(np.NINF) array(True, dtype=bool) >>> np.isneginf(np.inf) array(False, dtype=bool) >>> np.isneginf(np.PINF) array(False, dtype=bool) >>> np.isneginf([-np.inf, 0., np.inf]) array([ True, False, False], dtype=bool) >>> x = np.array([-np.inf, 0., np.inf]) >>> y = np.array([2, 2, 2]) >>> np.isneginf(x, y) array([1, 0, 0]) >>> y array([1, 0, 0]) """ if y is None: x = nx.asarray(x) y = nx.empty(x.shape, dtype=nx.bool_) nx.logical_and(nx.isinf(x), nx.signbit(x), y) return y